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ABSTRACT

This thesis develops methods of frequency analysis and synthesis

of digital computer programs describable in the form of a linear difference

equation with constant coefficients.

The mainspring of this investigation was the need for dealing

with control systems consisting of both analog and digital filters.

Most conventional control systems consist Of analog units and operate

on continuous data, but digital computers use sampled data. A uniform

treatment of the two types of data is essential in the analysis of control

systems incorporating a digital computer. The conventional method of

treating systems operating on only continuous data uses Fourier or Laplace

transformation; that is, transformation to the frequency domain. The

conventional method of treating digital programs is numerical analysis, which

deals almost exclusively in the domain of the independent variable; that

is, the time domain. By exploiting and further developing those areas of

numerical analysis to which frequency-transformation techniques were

applied, the thesis points the way to a comon language of dealing with a

mixed-data system.

If data-are sampled. at equal intervals of time (a practical

feature), description of a linear computer program always reduces to a

difference equation. It is possible to describe such a program by a transfer

function in the frequency domain in a manner analogous to the conventional

Pdescription of analog filters. Whereas components using continuous data

have transfer functions which are rational functions of the complex frequency

" iii
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-ST
variable 1, those of a digital program are rational functions of X -e ,

where e is the Naperian base and T is the constant interval of sampling.

Having described the digital computer with its program by a

transfer function, one may apply all the techniques of complex-variable

and transform theory to deal with digital filters. Theorems on realizability,

stability and other properties of programs are developed, and the amplitude,

phase and locus of a program are defined. The adaptation of the methods

of analog filters to digital ones is direct, although the necessary

modifications are often significant.

The synthesis of computer programs can be conducted along lines

employed in the synthesis of network. First, the desired frequency charac-

teristics of the program are stated; next, a rational function of

z - esT is found which approximates the desired characteristics for real

frequencies, s - Jw; finally, the program is realized on basis of the

approximating transfer function. For facilitating the approximation

basic entities or blocks of programs are analysed and methods are shown

by which such programing units can be combined to obtain the frequency

characteristics of the complete program. Various methods of program

realization, that is, programming, are developed and compared on the

basis of time and storage requirements, and criteria are developed to

permit the choice of the optimum programming procedure by considering

the mere form of the program transfer function.

Numerous examples of program analysis and synthesis are shown,

and one example of synthesizing a program for the compensation of a control

system is worked out. The latter example shows that the frequency analysis

of a complete hybrid system can be undertaken along the conventional lines

and that digital compensation of a control system is possible.

iv
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The application of the methods of the thesis to various problems

in numerical analysis is also shown. The problems of convergence (stability)

and of truncation errors (approximation) can be analyzed in the frequency

domain effectively. The study of convergence )y conformal mapping is related

to the usual methods, and a novel way of estimating truncation error is

shown provided only that the function to which the numerical process is

applied can be described by its frequency spectrum.
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INTRODUC TION

- The use of digital computers in control systems is now coming

into the fore. Unlike most conventional control systems involving analog

units which operate on continuous data, a control system employing a

digital computer of the present-day type must use sampled data in the

part of the system involving the digital computer. Hence, some parts

of this system use continuous data and others, sampled data. The Fourier

and Laplace transform methods of, analysing continuous-data control system

is well-known and developed, but the conventional treatment of digital

computer programs is by numerical azalysis or in the time domain. There-

fore, in order to apply the methods of frequency analysis to control

systems involving digital computers (mixed-data systems), the sampled

data part of the system must be described in the frequency domain. Some

work along these lines has been done but it must be further developed.

An analog system is a physical model of a set of differential

equations; whereas, a digital system is a physical model of a set of

difference equations. Operational and transform methods have been applied

to difference equations for some time. In 1942 Gardner and Barnes 1

presented a couprehensive and systematic treatment of the solution of

linear difference equations with constant coefficients by the Laplace

transform method. However, they do not deal with stability and errors

1 Gardner and Barnes, Transients in Linear Systems, John Wiley and Sons

New York, 1942, Chapter IX.
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2 which are important in control applications. The control point of view

is stressed in Tustin's 1 work on time sequences. In 1949 and 1950 Tustin's

method was further developed by Madwed 2 , who shows the relations of his

aspects of stability, but they do not analyze the errors associated with

their approximations.

In the meantime, Hurewicz 3 pioneered the analysis of pulsed

filters in the frequency domain, developed stability criteria, and

showed several examples of choosing parameters. It should be noted,

however, that Hurewicz's filters are only simple units such as differ-

entiators and lead networks, which are incapable of performing involved

computations as a computer can. Also, Hurewicz evaluates the output of a

pulsed filter at the sampling instants only. The behavior of the filter

between pulses remains a separate problem, and no readr method is pre-

sented to investigate the -whole question in the frequency domain.

W. K. Linvill 4 shows that sampling a continuous function ia

equivalent to the modulation of a series of unit impulses by the function.

The result is a new time function which can be thought of as being applied

to the sampled data part of the system. Furthermore, this new time

function has a Laplace transform; thus a frequency-domain analysis is

possible. Linvill shows that reconversion from discontinuous to continuous

1 Tustin, A Method of Analysing the Behavior of Linear Systems in
Terms of Time Series, J.I.EE. Vol. 94, Part 2A,#l, pp. 130 - 142.

2 Madwed, Number Series Method of Solving Linear and Non-Linear
Differential Euations, SC.D. thesis in Mechanical Engineering, NIT.

3 Hurewicz, Filters and Servo Systems with Pulsed Data, Chapter 5 of
James, Nichols and Phillips, Theory of Servomechanisms.

4 Linvill, W.K., Anal sis and Design of Sam led-Data Control Systems,

Digital Computer Laboratory, MIT, Report R-170.
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data is a filtering process and also shows what happens when the loop

is closed on a mixed data system. He is concerned only with the effect

of sampling on the system and cbes not consider the influence of digital

computer operations on the system.

This report is a summary of the work done by Salzer I . His

results permit the analysis of linear digital 6omputer programs in the

frequency domain; i.e., the operation of a digital computer program is

described by a transfer function. Thus the field is opened for the

complete analysis and synthesis, wholly in the frequency domain, of control

systems employing digital computers.

From the frequency-domain point of view, conditions governing

the realizability of program transfer functions are developed, the problem

of stability is studied, and conditions to insure stability are given.

Three methods of realization of programs from their transfer functions are

presented, and the time and storage requirements of each are studied. An

elementary example of transfer function synthesis is given. As in the case

of network theory, the analysis of a computer program in the frequency domain

is straightforward with a unique result, but the synthesis of a transfer

function has many alternate realizations. Also as in network theory, the

characteristics of the. transfer function to be realized may not be given

directly in a form leading to immediate realization but an intermediate

approximation problem may need to be solved. The background for solving

the approximation problem has been set up in that conditions of physical

iSalzer, J.M., Treatment of Digital Control Systems and Numerical Processes
in the Frequency Domain, SC.D. thesis in Electrical Engineering

!z
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realizability have been derived and methods of realization of all

realizable transfer functions have 'been) obtained. While some work has

been done directly on the approximation problem, much remains to be done

in this respect.

The function of this report is to provide a concise picture

of the frequency analysis of digital control systems and numerical pro-

ceases. The first chapter describes the processes of sampling and de-

sampling continuous functions and indicates that sampling is analgous

to impulse modulation while desampling is analagous to ripple filtering

in demodulation. Thinking of sampling as impulse modulation allows one

to relate the sampled to the continuous function in either the frequency

domain or the time domain. Furthermore, thinking of sampled functions

as impulse modulated functions allows one to characterize linear computer

operations on the sampled functions by transfer functions.

Chapter II derives the conditions of physical realizability

for computer-program transfer functions, discusses stability conditions

on these transfer functions, and presents procedures for plotting transfer

loci.

Chapter III deals with techniques for realization of transfer

functions with some attention to the approximation problem, while Chapter

IV deals with frequency analysis of some numerical integration formulas.
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CHAPTER I

DESCRIPTION OF THE SAMPLING PROCESS

1.1 Sapling a Continuous Function

A digital computer operates on numbers that represent samples of

continuous signals taken at discrete instants of time. The time interval,

T, between samples is a constant as shown in Figure 1.1, page 7 • In this

case, the input to the computer is the sampled function, 1 (t). The com-

puter senses the amplitude of each of these pulses (as a number) and

operates on the number.

The purpose of this chapter is to describe the sampling process,

to characterize it mathematically, to evaluate how well a continuous signal

* may be represented by its samples, and to show how and under what conditions

a continuous signal may be recovered from its samples.

The mathematical model of the sampling process which will be de-

rived later is very similar to actual physical processes. For example,

assm that i (t) is the voltage across a pair of terminals of some net-

work. How might it be sampled? The voltage may be sampled by connecting

a condenser across the terminals, allowing a current flow to build up a

charge on the condenser until the condenser voltage is equal to the terminal

voltage, and then disconnecting the condenser. In order that the oondenser

voltage be equal to the terminal voltage at some instant of time, the

sampling time should be as small as possible. It may be made very small, but

not sero. The total charge on the condenser is the integral of the curreat

\I .
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flowing over the time required to take the sample. Thus, as the

sampling time decreases, the current intensity must increase.

Physically this is how sampling might be done. Ideally, however,

we wish to take the sample instantaneously or in zero time. Therefore,

for ideal sampling in the above example the current flow must be infinite

for zero time at each sampling instant. Thus, in the ideal case the

charging current is an impulse whose area equals the amount of charge

*required to build up the condenser to the sampled value. Physically,

ideal sampling is not possible, but the idea permits us to set up a

model of sampling that can be treated mathematically.

1.2 Equivalent Mathematical Model of Ideal Sampling - Impulse Modulation

The ideal situation in the above example is to transfer to the

plates of the condenser a portion of charge in zero time, or to "hit" the

condenser with an impulse of current. The same end can be obtained if we

modulate the voltage waveform with an infinite series of unit impulses

separated by equal intervals, T, as shown in Figure 2. The area of any

one of the modulated impulses equals the value of the input function at the

corresponding instant of time. Thus, impulse modulation is ana3agous to

the process of sampling. The samples of Figure 1.1 have finite height, zero

width, and zero area; therefore, the sampled function does not have a Laplace

transform. The impulses of Figure 1.21 have infinite height, zero width,

The bar (-) over i(t) indicates the sampled functions.

2 The circumflex ( over i(t) indicates the impulse - modulated functLon.
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but non-zero area; therefore, the impulse-modulated function does have a

Laplace transform, which is why this mathematical model has been set up.

1.3 Use of Impulse Modulated Functions in the Analysis of Linear Digital

Computer Programs

A digital computer operates on numbers that occur at discrete

instants of time, i.e. it operates on samples of a continuous function.

In the previous section it was shown that for the ideal case, sampling is

equivalent to impulse modulation. If we think of the computer as "sensing"

the amplitude of samples, we may just as easily think of it as "sensing"

the area of impulses. With this extension or mathematical model, we may

analyze computer programs by describing the input to the computer as

impulses instead of samples. Since a sample does not have a Laplace trans-

form, while an impulse does, the advantage of this extension is immediately

obvious. In this mathematical model, both input and output are treated

as impulses, and both have Laplace transforms, In conventional (continuous-

data) systems, the transfer function is the ratio of the transform of the

output to that of the input. Since both input and output of computer

programs (when treated as impulse-modulated functions) have transforms,

we may define the transfer function of a linear computer program as the

ratio of the transform of its output to the transform of its input. In order

to carry out this analysis, we must have a knowledge of some of the properties

of impulse-modulated functions, or impulsed functions. The remainder

of this chapter is devoted to a discussion of some of these more useful

properties.

i,2
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1.4 Laplace Transforms of Impulse-Modulated Functions1

Otr analysis of computer programs is restricted to the cases in

which the time interval between samples is a constant, T. Thus, the

impulsed function can be expressed as the product of a continuous input

function and an infinite string of unit impulses, the interval between

impulses being T.

As the following derivation will show, the process of impulse

modulation may be readily described in the frequency domain. Essentially,

since the string of unit impulses (which is the carrier) has all harmonics

of equal amplitude, the impulse modulated wave has an infinite number of

side-bands rather than just the two which are present for a sinusoidal

carrier. The method of the derivation is to'make a4i'6urier analysis of

the carrier and to associate each side-band of the impulse modulated wave

with a Fourier component of the carrier. Let i(t) be the continuous input

function and k = .00 L(t - kT) be the infinite string of unit impulses.

(Ii. (x) = unit impulse occurring at x = 0.J Then the Lmpulse-modulated input

function is,.
t) = i(t) k= (1-1)

To find the Laplace transform of (1-1) let us first find the

complex Fourier series of the string of unit impulses.

k= -t kT = e (1-2)

A more oompe te derivation and discussion of the transforms of impulse

modulated functions is given in Reference 2, page 3.

C"
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In (i-2) - L 2 ff
In (1-2), y- . The c m s are the complex Fourier coefficients.

Solving for cm in the usual manner we have,

T/2

cm f 7 siL( -kT) emAt dt. (1-3)

-T/2

Pa writing out a few term of the series, (1-3) becomes,

Cm I iI[** *+ ~ r .. t ~ dt
-T/2

Within the range of the integral, the only term inside the bracket of the

integrand that is non-zero is the term, L(t). Thus (1-4) becomes,

T/2

on 1 5 (t) e-jmAt dt. l- )

-T/2

Because of the unit impulse in the integrand, the value of the integral is

just ejJI m evaluated at t = 0, which is unity. Therefore,

1

c M (1-6)cm = i

and the Fourier series of a string of unit impulses is,

jal~t(1-7))---- t-kT) = 0
k = -M

1 '
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Then the impulsed function becomes,

i t M * (1-8)

Now take the Laplace transform of the above equation.

'If(s) =L it)\ Lj~~ I .e i m~tj(19

The indicated summtion can be done after the transformation is made.

i1t eJm-ft-0

A fundamental theorem in Laplace transform theory leads directly to the

following result:

( S) I (s + jm.fL) (1-fl)
m- -

Thus we see that the Laplace transform of an impulsed function is periodic

having a repetition interval of J -.

An important fact about I (s) should be observed from (1-fl), It

is that there is a unique correspondence between I (s) and I (s) if and

only if the frequency spectrum of i(t), the continuous time function,, lies

in t he ange, -9<w<at . If the spectrum of i(t) lies outside this

range.. I(s) will specify the spectrum (in the range -AL<CO<j) of a

continuous time function, but this time function will differ from the



Report R-225

0 .

- A. Specturn of i(t)

- 2

B. Spectrum of it)

Figure 1.3 Unique Correspondence Between I(s) and T(s)
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original tim function. Thus, there is a limitation of bandwidth

caused by sampling. Figure 1.3 illustrates the case of unique corres-

pondence, and Figure 1.4, the case in uhich the spectrum of i(t) is too

wide.

As given by (1-11), I's) consists of an infinite number of terms;

however, an infinite series is difficult to handle, and it is desirable

to have a closed form expression for I(s). This can be obtained from

the partial fraction expansion of I(s). Consider a typical term, s - Si,

of the partial fraction expansion of I(s). Referrihg to (1-1) we see

that corresponding to this typical term,/ I(s) will have a typical series of

terms of the form,

K± 1-T k- s -s i + j k -na_

Thus we see that the pole at s si is repeated hi infinite number of times1i

at intervals of J-S', the line through these poles being parallel to the

imaginary axis in the s - plane.

A closed form equivalent of the above typical series can be

obtained by a change of variable in the following equation.
1

Tr k- cotr Tr=l+ 2 *2 n (1-12)
nt

1
Knopp, "Theory and Application of Infinite Series", New York, 1948, p. 419

7
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i )00

.a3. 0

A. Spectrum of i (t) whose spectrum is too wide for the sampling

rate.

0IOI)
22

B. Spectrum of i 1 (t).

n ~11 0 00)

C. Spectrum of i (t) that would produce the same sampled function

~ .2

Figure 1.4~Ilsrto of 11andvidth Limitation Caused y Sampling.
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Divide each side of (1-12) by z7, and make the change of variable, = a ±,

fcot a J2 TZ-13)
- 2 2 (1-.c)

n---

Multiply both sides of (1-13) by J/a. and obtain,

SL M Jr3V2 + '2' -2 2

The infinite series of poles of'T(s) corresponding to a pole of

I(s) at si can be put into a form that is identical to the right-hand member

of (1-14) as follows: separate the term for k = 0.

1 - 1 +_ 1+
k ,S - ss + jk-D. s - sk= i + JkIL s-sj - jkM1

(1-15)

Combine the tmo terms in the summation.

_ 1_ 1 + 2(s-s ) U-(610)s - S. + a - ) 2 k 2 .11 .2

kk= 1 ~ + ~

A comparison of (1-14) and (1-16) shows that,

1-coth (1-1

Thus we have the following closed form equivalent of the typical series of

I(s),

1 -s k K T

IIj ~ 3 A +- coth (S~ ) (a18
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for a pole of I(s) at a = si . Therefore, corresponding to the partial

fraction expansions of I(s), we have the following series fory(s).

n

I 1s K, coth T ( i

i=l

where "n" is the total number of poles of I(s), taking into account multiple

poles.

Let us now investigate the limitations on the positions of the

poles of I(s) due to sampling. Consider an infinite strip of width .Sl. in

the &-plane and parallel to the real axis as shown in Figure 1.5. Asswume

that all the poles of I(s) lie within this strip and in the left half plane

(LHP). Thus, I(s) has

jw 1!

e I

I s*.~

Figure 1.5 Infinite Strip Containing Poles of I(s)

.1

*7
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poles at these points plus poles at points shifted from the si s and

s*i 's (* means conJLgate) by the distance + Jk _M . Since I(s) has

poles only in the strips being considered, there is a one-to-one correspondence

between the poles of I(s) andy(s) that lie in the same strip. However,

if I(s) had poles outside this strip, there no longer would be this one-to-one

correspondence.
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CHAPTER II

TRANSFER FUNCTION OF COMPUTER PROGRAMS - REALIZABILITY AND STABILITY

Using the properties of impulse-modulated functions given in

Chapter I, we are now ready to investigate transfer functions of computer

programs. Our interest in program transfer functions is much more than

academic. The transfer function describes the program completely and

with it we can analyze and synthesize control systems employing digital

computers by conventional frequency domain methods.

In this chapter a linear digital computer program is defined in

terms of the mathematical model of sampling set up in Chapter I, its transfer

function is derived, and methods for determining the realizability and

stability of transfer functions are given. Several examples of stability

determination are also presented.

2.1 Transfer Function of Linear, Real-Time, Digital Computer Program

As pointed out in Chapter I, the input to a digital computer

may be assumed to be an impulsed function, for purposes of mathematical

analysis. A linear program of a digital computer operating in real time

is one in which the present output is a linear function of the present

and past inputs and the past outputs. The general form of this relation

is,

takiCt - - b(t - kT), (2-1)

{k-O k-I

in which all ak's and bk's are real, and T is the time between samples.

The time required for the computation must be less than T if each

calculation is to be completed before the next input arrives.
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Taking the Laplace transform of (2-1) yields,

m kT b -ksT ((a - wbka(2-2)
"k-O k-i

As in continuous data systems, we will define the transfer function

of a computer program as the ratio of the transform of the output

to that of the input. Let W(s) be the transfer function of a computer

program) then,

W(s) -(a) (2-3)

Solving for ot)/ r(s) from (2-2) we obtain,

• a ks T

V(s) i k 0 (2-4)
n

+),) - b •"kaT

as the transfer function of a linear, real-time, digital computer program.

With the understanding that b - 1, (9-4) becomes,O

~iiiakksT

W(s) - k O (2-5)
n _ --ksT
IZbk •-s

k-O

The inverse steps from (2-5) to (2-1) are uniquej therefore,

(2-5) is the general form of the transfer function of a realizable, linear,

digital computer program,. Thus, to be realizable, the transfer function2' of a linear, digital computer progra must be expressible as the ratio of

two polynomials in e T .The criteria for stability will be discussed in

a later section.
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It has already been shown that the Laplace transform, "(s), of

the impulsed input function is periodic of period -t-, as seen in (I-11).

By showing that W(s) is also periodic with the same period, we can prove

that O1s) is also periodic of period rL. A typical term of either numerator

or denominator of W(s) contains eksT. For s--*s + JmJ2 (m is a positive or

negative integer), the typical term becomes,

e-k(s + JmS)T e-ksT -Jkm .LT

As T-C1 - 2w and k and m are integers, the second factor is,

e- j k m  - • "j. j -m.

Hence, ek(s + jm-l)T . .-kaT

Therefore, the terms of the numerator and denominator of- W(s) are periodic

of periodf, and so is W(s). In equation form this means, W(s) -

W(s + jm)L), for a a positive or negative integer. The product of two

periodic functions is also periodic. Since -6(s) - W(s) -f(s), 16(s) is also

periodic of periodJr, as indeed it should because the computer output is

also sampled.

Since all the coefficients of (2-5) are real, it is readily

seen that W(s) - ) , in which the asterisk means conjugate. For real

frequencies this becomes w(jm) - W(-jm)*. This fact together with the

periodicity of W(s) tells us that W(s) is completely specified for all a

if it is defined over the range, 0

Summarys In order to be realizable, the transfer function of

a linear digital computer program must be expressible as the ratio of

polynomials in e . W(s) is periodic of periodCL i.e., U(s) -

W(s + JmJ ). Specification of W(s) over the range, 0 _Am _-9, completely

determines W(s).
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2.2 Stability of Programs

We have expressed the transfer function of computer programs as

a function of the complex frequel'cy "s"§ therefore, the same methods of

investigating stability as used in network analysis and servomechanisms

are applicable. The general necessary and sufficient criterion for stability

of a unit is that its transfer function have no poles in the right half

a-plane (RHP) or multiple poles on the jo)-axis. In network analysis the

frequency-domain method used to study stability is to map a contour

enclosing the right half of the s-plane (the contour is usually the jco-axis

and an infinite semicircle) into the W-plane. Because of the transcendental

nature of the transfer function of a realizable computer program, the

mapping contour in the s-plane must be modified.

As we have shown before, the transfer function of the computer

program is,
m -ksT

W(s) -P(sa) - k - 0 (2-6)
n -ksT

Q(s) bk
k -0

in which P(s) is the numerator and Q(s), the denominator of W(s); and it is

assumed that P(s) and Q(s) have no common factor. Both P(s) and Q(s) are

entire transcendental functions having as their only singularity an essential

singularity at infinity.1  Hence, we see that the only singularities of

W(s) in the finite s-plane are poles, and these poles occur at the zeros

fl of Q(s). Our stability criterion is that there be no poles of W(s) in the

RHP and only simple poles on the imaginary axis. Therefore, in order for

t For a further discussion of entire transcendental functions, consult Knopp,

"Theory of Functions," or Guillemin, "The Mathematics of Circuit Analysis."
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the progran to be stable, Q(s) must have no zeros in the RHP and only simple

zeros on the Jco-axis. To investigate the possibility of Q(s) having zeros

in the RHP or on the imaginary axis, we may take advantage of the periodicity

of Q(s). In proving that W(s) is periodic, it was shown that e-ksT is

periodic property. Therefore, if Q(s) has a zero in the RHP, it must have

one in the semi-inifinite strip shown in Fig. 2ol.
.^JO s-plane

jf (c)

Figure 2.1 Semi-inifinite strip of s-plane that must have a zero

of Q(s) if Q(s) has any zeros in the RHP.

Consider the map of the contour of Fig. 2.1 into'the e-sT plane.

Let us begin the path at the origin in the s-plane and encircle the strip

in a clockwise direction, corresponding to increasing frequency. It is

readily understood that corresponding path and enclosed region in the e-
sT

plane is shown in Fig. 2.2. The origin of the s-plane maps into the

point (i,0) in the e-sT plane. The corresponding sections of the path are

marked by small letters on both contours. In Fig. 2.2 we see that the

paths (b) and (d) cancel leaving the annular ring as the region conformal

to the strip of the s-plane that is under consideration. As 0- (of
0

Fig. 2.1) approaches cm, the radius of the circular path (c) in Fig. 2.2

approaches zero. Thus, the conformal map of the indicated strip consists

of two separate contours t one, a unit circle centered at the origin
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•"a T -plans

~unit circle

Figure 2.2 Conformal map of the semi-inifinite strp of Fig. 2.1

into the est plane,

and the other an infinitesimally small circle that excludes the origin

in this particular case. Only a slight extension of the foregoing procedure

-sT -ksT
is required to determine the map of powers of e . The map of e

will appear like that of esT except that each of the two separate paths

will be traversed nk" times; the region excluded by the infinitesimally

small circle will be that at the origin. Thus we see that the map of

this semi-infinite strip of the s-plane is effective in handling the

essential singularity of Q(s) at oe.

Now, consider the conformal mapof the semi-infinite strip of

Fig. 2.1 into the Q-plane. Remembering that 0(s) - 1b, • s T * b2e " T

+ be na , we see that the map of this strip into the Q-plane will

exclude the point (1,0), (the map of each term except the first excludes

the origin). This eliminates the need for mapping path (c). Moreover,

since the paths (b) and (d) cancel, we need to plot only the paths (a)

and (e). In other words the only part of the s-plane contour that we

need to plot in order to determine the locus of Q(s) is the part of the

contour that lies on the imaginary axis. This contour in the Q-plane

winl encircle the origin z-N 7 tineb in the counterclockise directign, where
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z is the number of zeros and N is the number of poles of Q(s) (taking into

account their multiplicity) in this strip of the s-plane. It has already

been pointed out that Q(s) is an entire transcendental function and, therefore,

has no poles in this strip. So, N - 0, and the contour in the Q-plane will

encircle the origin .Z times (clockwise is to be understood). The condition

for stability of W(s) states that Q(s) must not have any zeros in the RHP

or any multiple order zeros on the imaginary axis. Therefore, the map in

the Q-plane must not enclose the origin; Z must be zero. If Q(s) has zeros

on the imaginary axis, the Q-plane locus will pass through the origin. In

this case, we must determine the order of the zero. The following method

can be used: Assume that the locus in the Q-plane passes through the origin

for s - Ji. Then Q(s) must contain the factor (- s T - e-J~iT) where

n is the order of the zero. Divide Q(s) by (esT - e-J)iT) . If there is

no remainder, the zero is of higher order than the first and the program

will be unstable.

In addition to determining the stability of programs, conformal

maps give an indication of the degree of stability or instability and an

approximate value of the frequency at which the program is or may become

unstable* The amount by which the locus in the Q-plane misses encircling

the origin gives a measure of the stability of the program. The farther the

locus is from the origin, the more stable or convergent the pr ogram. The

frequency corresponding to the point on the Q-plane locus nearest the origin

is approximately the frequency at which the program is or may become unstable,

or at which it will oscillate in a damped fashion.
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In addition to expressing the program transfer function as a function

of "a" we may also write it as a function of • . Make the change of variable,

z - e -s T . Then we may define a new function,
m k

%jk

v(Z) N(z) k - 0 (2-7)D " n bk k

k-O

V(z) - a o + alz + a 2 z2 +  + a am ZM 8a~2*.........+am (2-8)

1 + bbZ +b ......... bnzn

It is readily seen that the right half of the s-plane maps into the inside

of a unit circle centered at the origin in the z-plane. The imaginary axis

of the s-plane becomes the unit circle in the i-plane (see Fig. 2.3).

.0
s-plane y z-plane

,r /

Figure 2.3 Map of right half of s-plane into z-plane

Therefore, if the program is to be stable, all the zeros of D(z) must lie

outside the unit circle except that single order zeros may occur on the

unit circle. In other words, the magnitude of the roots of D(z) must be

greater than or equal to unity, and the roots of unity magnitude must be

simple.

4'
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Summary: To test for the stability of a program, map the smi-infinits

strip of Fig. 2.1 into the Q-plane [Q(s) is the depominator of the program

transfer function3 If the locus in the Q-plane does not enclose the origin,

the program is stable or convergent. If the locus passes through the origin,

Q(s) has a zero and the order of this zero must be determined. If the zero

is of first order, the program is stable; otherwise, unstable. An alternate

method is: Make the change of variable, z - e s T, and find the magnitude

of the z-roots. If each root has either a magnitude greater than unity or

equal to unity and is simple, the program is stable or convergentj otherwise

unstable or divergent.

2.3 Loci of Q(s)

In the previous section it was demonstrated that the stability

of a program can be determined by mapping the contour enclosing the

semi-infinite strip of Fig. 2.1 into the Q-plane. It was also shown that

the only part of this contour that we need to plot is that on the imaginary

axis. The paths (b) and (d) cancel and the path (c) excludes the point

(1,0) in the Q-plane, Hence, we are interested in the properties of Q(jm)

ad its locus in the range, - ....
2

Q(jw) has several properties that are helpful in determining its

locus.

(1) Q(jm) is periodic of periodC). This was proved in the

previous section.

(2) Q(jw) - Q(-Joo)*. This property follows directly from

the fact that Q(Jo) is a polynomial in -JOT., and as a

consequence, the locus of Q(jw) must be symmetrical about

the real axis.
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(3) At CO 0 and _7 Q(Jw) is real and its locus at these two

points crosses the real axis either normally or tangentially.

This statement is proved and elaborated upon in Appendix A.

As a consequence of the first two properties, the locus of Q(Jco)

for 0.4. m. 4 completely determines the locus in the Q-plane. The locus

for - 4  __w Z.-0 is just the mirror of, that for the positive values of 00.2-
Thus the first two properties result in a substantial reduction in the amount

of work required to plot the locus of Q(J c). The third property enables

one to determine accurately the shape of the locus in the neighborhood

of w - o and + .

Several methods may be used to determine the locus of Q(Jco).

Three of these are: (1) add the loci of the individual terms of the

polynomial (each locus is a circle) to obtain that of Q(Jco); (2) factor

Q(jo) and multiply the loci of the factors; and (3) express Q(jW) in the

form R(oo)/Aco) and make a point by point plot. The method that is best

to use depends on the particular Q(Jco). However, it is to be expected that

the extra analytic work required in methods (2) and (3) will result in

less graphical work and more accurate loci. None of the methods will be

discussed, but they will be illustrated.

Let us now consider several examples of loci of Q(Joo).

1. Let Q(s) - 1 - 0.8 e -sT  0.3 "2sT  (2-9)

Take the derivative with respect to s.

dQ . 0.8Te-sT - ).6Te-sT

dQ . O.Te-ST (4 - 3 e-ST) (b)
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For neither s - 0 nor 1-1is the derivative zero, so the locus is normal

to the real axis at both points. Fig. 2.4 (a) shows the locus of Q(Jco) and

how it was obtained (for the point cat - 3) from the loci of the individual

terms. The locus for negative values of w is shown by the dashed curve,

since it may be obtained from the other half of the locus. After this, only

the locus for positive w will be drem. The locus does not enclose the origin)

therefore, a program whose transfer function has the denominator,

S- 0.Be + 0 -3e 2 sT will be stable.

2. Let Q(s) - 1 - O.8e s T + 0-4e-2sT (2-11)

Take the derivative with respect to a.

.8Te sT - O.8Te 2sT (a) (2-12)

- o.8TesT (1 - e-S)1 (b)

For a - 0, the derivative is. zero, Q(s) has a saddle point here. Q(s) can

be rewritten as,

which brings the saddle point into evidence. In this case p - 2, so at

- 0. the locus is tangent to the real axis. At s - + #  0, so the

locus is normal to the real axis at this point. Fig. 2.4 (b) shows the

resulting locus. It does not enclose or pass through the origin; therefore,

this Q(s) will lead to a stable program.

3. Let Q(s) _ 1 - 0.8e s T + O.5e "2 s T  (2-14)

Take the derivative with respect to a.

O.8Te- . Te-2ST (a)

O.2Te sT (4 - 5e sT)  (b)

(I-e b
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For neither a - 0 nor +Jf-is the derivative zero, so the locus of Q(Jm) is

perpendicular to the real axis at both points. The locus (as shown in

Fig. 2.4 (c)) does not enclose the orig~n; therefore, this Q(s) is the

denominator of a stable program transfer function.

I_

SI
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CHAPTER III

ANALYSIS AND SYNTHESIS OF LINEAR, DIGITAL COMPUTER PROGRAMS IN TIM
FREQUENCY DOMAIN

In the first part of this chapter the analysis of transfer functions

is dealt with by expanding the transfer function into partial fractions.

Next, programs are realized from transfer functions by three methods: direct

programming, cascade programming, and parallel programming; and the storage

and time requirements of each are presented.. In the last part of the chapter

a short, general discussion of synthesis is given, and one possible synthesis

procedure is illustrated by the synthesis of a program for differentiation.

3.1 Response of Programs at Real Frequencies

The input to a computer has a certain frequency spectrum, and

in order to analyze the action of a computer program on this input function,

we need to have a knowledge of the frequency response of the program. Thus,

we are interested in the locus of W(Jco), the map of the jo-axis of the s-plane

into the W-plane. A familiarity with the frequency characteristics of the

simple transfer functions is essential for the understanding of the possibilities

and limitations of more complicated ones.

In many cases the desired locus of the transfer function of a

digital computer program is given, and the problem is to approximate this

locus by that of a realizable program; i.e., by a ratio of polynomials in
-sT

e . A study of the loci of typical terms of W(jw) is helpful in making

this approximation.

3.2 Analysis of Building Blocks of Transfer Functions

As we have seen, the transfer function of a linear, digital

computer program is most generally expressed as the ratio of polynomials in
-sT

a
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W(s) O s o + ale'-ST + a 2e2T + Go*.. + a me-mT
-a- --sT

0(s) 0 *a~ 2 m(3-1)
I(s) be-sT + b2e-2sT * a -nsT

A partial fraction expansion of W(s) can bemade, and we may call the individual

terms of the expansion the basic building blocks of a program: transfer function.

In general W(a) may be broken up into a polynomial plus first and second degree

partial fractions (from the real and conjugate complex roots of the denominator,

respectively)'.

In analyhing computer programs in the frequency domain [finding

the locus of W(J)] several methods can be used. Two of these are: (i)

Find the loci of the numerator and denominator polynomials and then divide;

(2) expand W(s) into partial fractions, find the locus of each term of the

expansion, and add the resultant loci. In most cases the first method

is easier to use, but the second is included here because of its ccnnection

to the synthesis of program transfer functions (approximation of a desired

locus by a sum of the basic building blocks.). A familiarity with some of

the possible loci of polynomials and first and second degree partial fractions

is an aid in the synthesis procedure.

The loci of second degree polynomials have already been discussed,

and the locus of a fourth degree polynomial will be illustrated in connection

with polynomial building blocks. Since there is only a short step from

the loci of polynomials to the locus of a transfer function, the first

method of finding the locus of W(jm) will not be discussed.

For use. of the second method, we will investigate the loci of typical

terms of the partial fraction expansion of W(jco);

.&
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3.21 Polynomials

A typical polynomial transfer function is of the form,
( r -ksT

For s - Ja, the locus of each term of the polynomial is a circle. For

Q(s), the constant term is unity, but for polynomial building blocks, the

constant term may have any real value. In the previous chapter, three

examples of the locus of second order polynomials in esT are given, so now

let us find the locus of a fourth order polynomial. Let,

Was) - (13 + 4 e ' aT - 3
e 2&T + 2 e-3sT - e-JsT) (3-3)

First examine the function for saddle points.

idW 1 (- Te-sT , 6Te-2sT -6 T 3sT , I4sTe ' T)

.2T e-ST 3e-2sT -s
a - - (2  3eS *3e - 2e3a). (3-5)

The derivative is zero far s - 0, therefore W(s) has a saddle point there.

W(s) can be written in the form

W(s) 1 - (2+e 2 aT) (l e5T ) 2 (3-6)

which brings the saddle point at a - 0 into evidence. The saddle point

is of first order; therefore, the locus is tangent to the real axis at

0 - 0. WOOD) is

W(W) 1- (2 + •-j2 ) ( - e-JOT)2  (3-7)

In this case it is easier to determine the locus of W(jo)) by

plotting the second term of (3-7) and shifting the origin one unit to the

left. A convenient way to find the locus of the second term is to let
JU. -2

-(2 +e 3 2- (1 - e-O) *ReJ , (3-8)
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where both R and are functions of coT. Some trigonometric manipulation

yields,

R - 2(l - cos o)T) V5 + 4 cos 2oT (3-9)

and

- tan"'1 [an O tan 2 0T] 3-00 ,F , '-. (3-10)

The resulting locus of W(jeo) is shown in Fig. 3.1.

I ( +• " 3T

W(9) m .- 1 (2 + e- s 1 "- sT 2
* )

Figure 3.1 Locus ofa Fourth-Decree Polynomial Transfer Function

3.22 First-Degree Partial Fractions (real roots)

In the partial fraction expansion of a rational function a

a typical term has the form,

w(s) 1 0 (3-11)l~po ,
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If the constants c and are real, then (3-11) cm be considered

a basic building block. In this section we will consider the case in which

oef and P are real. The case of complex constaits is considered in the next

section.

First, we may set c -1 because it is merely a scale factor.

Second, the magnitude of P must not be greater than unity for W1(S) is

then unstable. If PIj L 1, the typical term is stable.

To determine the loci of typical terms of the form (3-11), we need

only apply some of the rules of the loci of complex functions. First, note

that the locus of 1 + p e-jT is a circle of radius PII centered at the

point (1.0). To find the locus of W1 (jm), the inverse of a circle must be

found. If )I - 1, the circle (1 + •"JeT) passes through the origin,

and its inverse is a straight line parallel to the imaginary axis. If

P14l, the circle does not pass through the origin, and its inverse is

another circle. The loci of two stable first-degree partial fractions are

shown in Fig. 3.2.

_ _ _ 1

I + 0.5 e J'OT

semi-

.5 • "JWT

a. W(s) .- ST
1 0.5 e-

b. W(s)

Figure 3.2 Loci of Firet-Degree Partial Fractions 
I + e sT
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3.23 Second-Degree Partial Fractions (complex roots)

If a typical term,

W1(s) . , (3-12)
I • sT

in the partial fraction expansion of a rational function of a-T has complex

constants, there will be another term,

W2 (s) - - (3-13)

1+ *

in the expansion whose constants are the conjugates of those of W1(s).

(The asterihk means conjugate.) Both Wl(s) and W2 (s) will be stable if and

only if IPI-- 1. If the rational function has real coefficients (as in

practical problems) the terms such as Wl(s) and W2(s) must come in pairs.

Add the two and obtain a typical second degree partial fraction with real

coefficients.
* * * sT

Ws ) U (..' ) * ( + 4 o3)e-4)
3 W2 1() s T * "2 sT

In this section the discussion is restricted to second-degree partial fractions

whose denominators have complex roct of. To simplify the analysis,
W3(s) can be written as,

1 + ale-sT

w3(s) -a! e (3-5)

1 2 a

which differs from (3-14) by only a constant multiplying factor.

To insure that the roots of the denominator of (3-15) are complex,

bl 2  4b2. With this condition imposed on the constants of the denominator

of (3-1), it can be considered a basic building block of a program transfer

function.
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Now let us consider the stability of such a building block.

Wj(a) wil be stable if and only if both W1 (S) and W2(s) are stable. A

comparison of (3-14) and (3-15) shows that,

b1 - P + P*, and b2 -PP* 2. (3-16)

Therefore, the necessary and sufficient condition for the stability of

3W ) is that, 0 < b2  1. We may combine this with the condition for

complex roots in the de4 ominator of W3 (s) and obtain,

( b2 <1 (3-17)

as the necessary and sufficient condition that insures stability of W3 (s)

and complex roots of its denominator.

In Fig. 3.3 there are plotted three loci of building blocks

of the form (3-15). All three are stable. It should be observed that by

changing only the numerator of the transfer function, three completely

different loci have been obtained.

By adding building blocks of the form discussed in these sectionj,

a desired frequency characteristic can be synthesized. The synthesis of

a differentiating program is discussed in a subsequent section.
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OT m0

(a)1-0.80'-a
Ia 0 *88*sT + 0.e-28T

if1 -

1 0 8 0-T + o.4 9-2sT

Im 00

0-4( o :o- 0 .59sT)

c) 1 _ 0.86-T +, 0 -11T

Figuie 3.3 Loci of Second-Degree Partial Fractions
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3.3 Realization of Programs From Their Transfer Functions

The purpose of this section is to develop and compare methods by

which a program can be derived from a rational function z - sT which is

the transfer function of the program. How this rational function is arrived

at in the first place is the concern of the last section of this chapter.

3.31 General Considerations in Program Realization

In choosing a particular method of programming, one may consider

the following factors:' storage requirements and time requirements. To a

certain extent one of these requirements can be reduced at the expense

of increasing the other and the optimum method will depend on the particular

application. It is necessary, therefore, to make available various possible

methods of programning and to form some idea about the requirements of each;

intelligent program realization can then be adapted to each application.

In the consideration of storage requirements of linear programs,

it is convenient to distinguish three types of storage: data storage, constant

storage, and instruction storage 1 The data are the successive sampled

values of input and output. The complexity of a program is closely related

to the number of constants and to the age of the data to which the program

refers. The program can be divided into arithmetic and manipulative parts.

The number of arithmetic operations involved is roughly proportional to

the number of constants, each implying a multiplcation (of a piece of data

by the constant) and an addition (of the product to the other terms).

The number of manipulative operations is related to the "age" of the oldest

It is understood that in a general-purpose computer there is no physical
difference between the storage regtsters ccntaining numbers or instructions,
and any register may hold either kind of information. The distinction
made here is only for the purpose of discussion.
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data used, where age is expressed in terms of sampling intervals. All

"younger" data must also be stored even if not used at each calculation

(the corresponding constants being zero), for eventually they will become

the oldest data. After each calculation of a new output value, the manipulative

instructions shift each piece of data to a storage location at which an older

piece of data has been, the oldest data being lost. The manipulative program

is seen to rearrange the data storage in such a manner that at the new sampling

point the same arithmetic program will calculate a new output value.

The, time requirement of a program is the product of the number of

instructions to be carried out and the average duration of an instruction.

The latter factor depends on the physical characteristics of a particular

computer and is more or less fixed; the number of instructions performed

in sequence, however, depends in part on the manner of program realizatiod.

In each particular realization a significant trading of time for storage

is possible by so-called cyclic procedures. One notes that often the calculation

of each term in a program involves the same sequence of arithmetic operations.

The simplest and fastest procedure is to store as many of these sequences

as. there are terms to be calculated. Considerable storage may be saved,

however, by storing these instructions only once and cycling through them as

many times as there are terms to calculate. Unfortunately, the time requirement

increases considerably, for in each cycle the addresses of the instructions

must be adjusted to make them refer to different storage locations for different

terms and the number of cycles must be counted to permit termination of

the cycling process.

The following sections and related appendices will serve &a specific

illustrations of these considerations in programming.
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3.32 Direct Regression or Direct Programming

The starting point of our realization procedure is the general

expression for the transfer function of a linear program,

W(s) a * 1 e5 s T + a2e 2aT + + &m - sT

1 + ble'sT + b e2sT + +... be - T (3-18)

In order to interpret a program in the time domain it is necessary to eliminate

fractional expressions. The most straightforward way of doing this follows

directly from (3-18). From it we can obtain
(m --asT -naT) w(a).

V~s - &0 e /I(s) - (be + oee+,bn 0
*% ... ame (, - ' ... be

(3-19)

The inverse transform of this expression is

Vt)- a.j"(t) + al.itt -- T) a .. *a(t - mT) - b3(t - T)

- ... - bd(t - nT), (3-20)
n

where (t) and'(t) are impulse-modulated (sampled) time functions having

the value zero everywhere except at the sampling points. In terms of some

continuous functions 6(t) and 1(t), which agree with the area-values of

1(t) and f(t) at the sampling points, (3-20) is often written as

0 a0i 1 aliJ. + ... + amij-M -bo -..- bno Jn, (3-21)

where j signifies particular sampling point and j-k the k-th preceding sampling

point. Eq. (3-21) is more familiar to the numerical analyst than (3-20),

but the two are entirely equivalent and are called regression formulas.

These equations state that the present result (output) is computed by a

finite linear combination of the present and past input values and of

past results (output vlues).

Several characteristics of regression formulas should be observed.

If the right side of (4-20) or (4-21) has at least one non-zero bk, then
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the present output depends on at least one previous output, which in turn

depends on an output further back and so on. It follows that the present

output value is affected by output values as far back as the start of the

problem and therefore, also by input values that far back. Thus regressing

to a finite number of output values corresponds to regressing to an unlimited

number of input values. This aspect of the regression equatibns is important

and will be further emphasized in the following sections.

Interesting conclusions can be drawn concerning memory requirements

on the digital computer by considering the actual programming of the regression

formula, (3-21). Assuming that none of the coefficients ak and bk are zero,

one can easily see that in order to calculate a new output value o j, when

a new input value i is received, m previous input values and n previous

output values will have to have been remembered, requiring m + n memory

positions for data where m and n are the subscripts of the last non-zero

coefficients, and furthermore, it is necessary to store all these data even

if some other coefficients are zero because at the next sampling point

the same pieces of data will be associated with different coefficients.

It can be stated that, at least when programming is done by the

illustrated direct regression methnl, the data memory consists of m + n

registers (memory positions) where m and n are the degrees of the numerator

and denominator polynomials in z - a- s T of the program transfer function W(s).

Actually this data storage requirement may be reduced, as will be shown in

Sections 3.33 and 3.34.

To be able to make comparisons between the various synthesis

procedures it is necessary to do the actual programming. This exercise

is left to the appendices, and the results will be compared after the

other synthesis procedures will have been discussed. In Appendix B the
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arithmetic and manipulative parts of the direct regression program are first

constructed separately; then a new more compact program is shown which inter-

leaves the arithmetic and manipulative instructions. Although the Whirlwind

code is used, the results and conclusions can be considered quite general

in view of the fact that the instruction complements of most general-purpose

digital computers are conspicuously similar.

3.33 Cascade Programming

If the numerator and denominator polynomials in z - are

factored, (4-18) takes the form

(S a(l+c1e-sT c 2e -ST cm-sT(1 + cle ~s) (j * eT) .. *I.c

W(s) - -T (3-22)
(l 4 d e s ) (1 + d2 e - ) ... (1 d n d' T)

where -(I/c k ) and -(I/d) are the roots of numerator and denominator

respectively, when considered as polynomials in z* Because the coefficients

ak and bk of these polynomials are real, the Ck and dk will also be real

or will come in conjugate pairs. At any rate, it is possible to group the

monic factors of (3-22) in some manner

W(s) - W1 (s) W2 (s) ... Wp(s), (3-23)

where each W (s) is of a rational form in z having a numerator and a
k

denominator of not higher degree in z than W(s) itself has.

The form of (3-23) reminds one of the transfer function of cascaded

linear units in a servo system. Cascading means that the output of one

unit becomes the input to the next one. There is no difficulty in using

the same interpretation to define cascaded programs. At every sappling

point the output of each regression equation is used in calculating the

output of the next one.
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To be more specific, let us assume that: (I) W(s) is a proper
1

rational fraction in z, that is, m < n ; (2) all roots -1/ck and -1/dk

are real and distinct, since generalization to the case of conjugate complex

roots turns out to be direct; (3) a M 1 in order to avoid its nuisance
2o

value in the discussion2 . With these assumptions it is possible to have

p - n in (3-23) with the denominator of each Wk(s) being a single monic

factor in s that is,

I + eke s

Wk(s) - (3-24)k i + d e - s T '

where ck may or may not be zero, but d k 0. There are n factors of the

type (3-24) each representing a simple regression equation. In m of

the factors ck O, in the other n-m factors ck = 0. The data storage

associated with each Wk(s) equals 2 when ck J 0, and 1 when ck

However, the input data that must be stored when ck J 0, is also the output

data that had to be stored for the preceding cascade program W k_l(s);

consequently, there is only one data to be stored for each Wk (s) regardless

of the value of ck, except for the first one W (s). But when m < n (proper

rational fraction), one ck - 0, say cI - 0, making the total required data

If mnn, W(s) can be written as the sum of a polynomial and a proper

rational fraction in z - e- s T . The program corresponding to the polynomial
part is a simple linear combination of input values. Discussion of this
case is omitted without any serious loss of generality.

2 If a0 J 1, only a simple multiplication has to be added to the program.

3 Each Wk(s) is the transfer function of just a regression equation and

its data storage is the sum of degree of numerator and denominator, as
discussed in the previous article.
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storage n; a material reduction over the m * n data needed in direct regression

programming•

In order to translate the cascade scheme into an actual program,

we may proceed as follows. First, we write (3-23) (with p n n) in terms

of input and output transforms,. as

- s) (3-25)

One way of making (3-25) an identity is by letting

-

I(s) 1~a

rj(s) '0(s

0.

(3-26)

which make

n
Using the relations (3-25) and (3-26) we obtain

Ila) Is(s) * 01 **s a)(-7

The various factors equal the respective program transfer functions namely,

J4
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'(s---s u 1 _-T

I ,

2() . 2 (s), c2° " T

I 1d 2 e a(3-28)

We) 1 + C n -sT-.0= ) + • sT

where a of the ck are not zero, Multiplying by the denominators changes

the set (3-28) into

(1 +w dle- s T ) -01 ( s
) - r(s)

(3 + e s T) "'2 (s) - (l + 2 e sT )  (s)

(1 + de'sT) O'(s) - (1 + c e'sT) 2(s)

(3-29)

SOne -sT '6'(s). (l + -S.T

The inverse transform of the foregoing set, with one term of each equation

transposed to the right side, is the desired set of regression equations.

0 lt - djol(t-T)

0 (t). (t) + o 2o(t-T) - d (t-T)

~0t O'- (t) * c&(t-T) - d 3 '.(t-T) (-00(-30)
S

i,:. ~~~ t)-nl(t) + cn 8-l(l-T) -driP(t-T)

n
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The detailed coded program corresponding to (3-30) is shown in Appendix C.

Cascade programming, although not referred to by that name, is

a familiar technique in numerical procedures. However, the clear-cut and

general equivalence of the direct regression and cascade programming is not

always well understood. Cascade programming arises naturally from the kind

of thinking prevelant in numerical work. Consider the simple example of

solving the second-order differential equation,

d + -o(3-31)

dt

The derivatives may be considered as the separate variables, y1(t) and

y"(t); then we obtain the following three sampled functions:

y-WCt) - - t-T)

y - '1'"(t) j ,(t - T) (3-32)

y(t - ,t y T)

where the first equation of the set is derived from (3-31) while the second

and third are elementary first-difference extrapolations. The set (3-32)

indicates cascade programming because the output of the first equation is

in the input of the second, and the output of the second equation is the

input to the third. The peculiar thing in this case is that the input

to the first equation is not an independent function but directly related

to the output of the last equation. This feature establishes the constraint

imposed by the differential equation.

The Laplace transform of the set (3-3) is N

¥ . f,,-sTf-
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from which the explicit relations between inputs and outputs are obtained

as followns

T M -sT 

(

1 -e

For realization by three cascaded factors, we have

W(s) - P-SeT

W(s) .
1 -sT (3-35)

W3(s) -
3 -e-

It is clear that a single transfer function can be made to replace the

cascaded system of three; thus

W(s) - W(s)W2(s)W3(s)

W(s) - -PT2e- T  (3-36)
W(S 1 - 2e'ST + • " 2 s T

The corresponding regression equation is simply obtained as

i(s) - (2 - pT )e'ST(s) - e- sT(s). (3-37)

The inverse transform of this equation is

Y-t) - (2 - pT2 )3(t - T) -Y(t - 2?T). (3-38)

which could have been otained from (3-32) by the elimination of y (t) and

y"(t), but even in this simple cae the process of elimination in the time

domain is rot direct.
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The fact is that in numerical work a cascade method such as (3-42) is

much more generally used than the direct regression of (3-38). Often there

is good Justification for this preference; for instance the values of the

first and second derivatives may also be needed. However, when such or

similar Justifications do not exist, the direct regression may turn out to

be simpler than cascading. In the present example, (3-32) calls for one

more constant, two more multiplications and one more addition than (3-38).

If the first two equations of the set (3-32) are combined, one multiplication

is saved; furthermore, the manipulations in the direct method happen to be

more awkward. Because in this case the input and output are the same quantity

the formulas of Appendices B and C are not directly applicable, the requirements

of the tic methods must be determined by actual trials.

3.34 Parallel Programing

If the transfer function of a program is expanded by partial

fractions in terms of z, (3-18) talea the form

fl f 2  f

W(*) 1 + e 2 + *"' + n (3-39)
l1 1 + d 2 e n de '

as long as m n. Thus, the transfer function W(s) is replaced by the

sum of a number of simpler transfer functions; namely,

W(s) - wl(e) + W2(s) + ... + W (3-o)

where some of the W .s) may be the combination of several partial fractions,

but all are of lower degree than W(s) itself.

The form of (3-40) may remind one of parallel combinations of

network admittances. Paralleling means that the same input (driving voltage)

is applied to all component admittances and the output (driving-point current)

is obtained as the sum of individual outputs (current through each admittance).
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The same interpretation can be applied to parallel programming. The programning

will involve p regression equations all using the same input values, and all

their outputs adding to produce the desired over-all output.

To arrive at a more specific interpretation, we first make a few

restrictions again: (I) W(s) is a proper fraction, i.e., m < n, and (2)

the roots of the denominator polynomial are real and distinct. Then all

constants fk and dk of (3-39) are real and in (3-40) p can equal n; moreover,

each term of (3-39) is a simpie regression equation involving two constants

and one data storage. Thus, the total number of data to be stored is only n.

Just like in the case of cascade programming, the lower requirement for data

storage of parallel programming. may be a great advantage over the direct

programming method. However, this feature does not mean that parallel or

cascade programming should always be employed in preference to direct
programming. For instance, there is the case when m - 0; i.e., the numerator

of W(s) is 1 (or a0). Of the input values the program uses only the present

one and the total data storage is n regardless of the programming scheme

used; on the other hand, the number of constants will be n for the direct

and cascade method, but 2n for the parallel method, putting the latter at

a disadvantage. Similarly, if the denominator of the over-all transfer

function lacks several terms (say, the denominator is 1 - b e nsT),
n ), then

factorization of the denominator introduces all terms, making the cascade
and parallel program much longer than the direct program. Another factor

which may militate against the use of parallel programming is the presence

of multiple roots in the denominator. If a root is of multiplicity r,

it may produce up to r terms of degrees r, (r-l), ... 2,l (the r-degree

term never being absent) in the partial fraction exapnsion, but the same

root will require only one r-degree, or r first-degree, cascaded factors.
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In order to interpret the parallel method of programming, we

proceed in the usual manner, For the various terms of (3-40) with p - n.

we write

Wl() . fl

-is "~(s)
1(s) l 1 e

W2(8) - 2

i~I l d2 e",

(3-)

W(q )- nwn() " "I1 d e-87
n

and

w(S) (3-42)

Cross-multiplication by the denominators in (3-41) yields the set

(1 + dle- )03() - '(s)

(1 * T )02 (s) -f as)

* • (3.-43)

(1 + de-a )0(a) f (s)
n n n I

'while in view of (3-41) and (3-42), (3-40) can be written as

('(a ) - (s) * (s) * ... * ( . ((-s))41 2
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The inverse transforms of (3-43) and (3-44) yield the desired set of

regression equations, which follows.

l(t)- f lr(t) di(t-T)

62(t) = f 2 r(t) - d2e2 (t-T)

• (3-45)

z(t) - f (t) - d T (t-T)On n n n

'6t) - -l~t) + -d2it n .

The detailed coded program corresponding to (3-45) is shown in Appendix D.

Parallel programming has not been generally used in numerical

work. To the knowledge of the writer, the usual methods of numerical

analysis do not naturally lead from a direct regression equation, which

has reference to several previous input and output values, to a set of

simpler regression equations, each of which refers only to the last

input value and to a preceding output value. By the method of frequency

transformation the parallel method is found quite directly.

1 In case of complex d's in (3-39), a combination of two conjugate complex

partial fractions in z will result in a slightly more complicated regression
i j. equation, involving one additional input and output.
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3.35 Comparison of Programng Methods

The purpose of this section is to compare the effectiveness of

the various methods of program realizations based on the transfer

functions of the programs. A complete general treatment appears too

far-fetched and, therefore, this study is limited to a certain class of

programs. Despite these limitations, which are discussed below; the

investigation is sufficiently general to show how the results can be

used to improve the instruction code of a general-purpose computer or

to design a special-purpose computer, when these are used in control

applications.

The three methods which will be compared are listed below:

(a) direct programming,

(b) cascade programming,

(c) parallel programing.

Other programming schemes may be derived from the rational transfer

function W(s). One may carry out the long division in z of the numerator

by the denominator until he arrives at a certain number of terms of the

quotient. The transfer function can then be expressed as the sum of the

quotient terms and of the remainder divided by the divisor (the original

denominator). Any number of variations can be obtained by stopping the

long division after different number of steps, but only in the most unusual

cases can this approach be expected to yield a more efficient scheme of

programming than the three major methods discussed in the preceding sections.

ii! -
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Other schemes that are even more artificial than the long-division scheme may

be derived, but no other general programming method has been found that given

promise of effectiveness comparable to the three which are considered. It

is noted that in certain cases a combination of two of the three listed

methods may turn out to be more efficient than any one. An example of

such a case is described below.

As the basis of comparison of programming methods, the requirements

in storage and time are used. The particular application or purpose cecides

which of these two factors should deserve more' attention. It is assumed

that the complete sequence of instructions, as used at each sampling point,

is stored; the possibility of cycling programs, which re-uses a short

sequence of instructions for the calculation of each term, is not discussed.

Essentially the Whirlwind I code is used throughout, but variations are

considered.

As a starting point we recall that the transfer function of a

linear program is,
-sT -2sT r esT

W(s) - O(+) a 4 ale a2e + 000 + em (3-46)I(s) -T 2 T b nsT
n

1
In general, m and n may be any positive integesI and indeed, their relative

sizes will hardly influence the comparisons to follow. Nevertheless, it is

helpful to distinguish three cases:

(1) n - 0. (3-46) reduces to a polynomial in z - e ST; i.e.,

the new output value depends only on present and

past input values, not on past outputs also.

Present-day numerical analysis abounds in numerical

This is in contrast with networks where certain restrictions on the

L degrees of numerator and denominator polynomials often exist.
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1
processes corresponding to this special case.

(2) a < n. (3-46) has the form of a proper rational function

of z in this case. In Sections 3.32, 3.33, and 3.34

dealing with the various programuing schemes, this

case was assumed for the sake of simplicity.

(3) a >n. The rational function in z of (3-46) may be called

improper, but it can be converted to the sum of a

polynomial (Base I) and of a proper rational fraction

(Case 2) in z 4 e - s T .

In order that the storage and time estimates to be arrived at should apply

to all cases, it is necessary to define the followimg quantities with

reference to (3-46):

a - degree of numerator,

n - degree of denominator,

sk - one less than the number of non-zero constants in
the numerator (mk( n).

nk n one less than the number of non-zero constants in
the denominator (nk 7 n).

me  - one more than the excess of m over n; i.e.,
me M m-n+l when m a n, and me - 0 otherwise. For

proper rational fractions m < n and m e OC

On basis of the coded programs shown in the appendices, the table of

Fig. 3.4 summarizes the storage and time requirements in terms of the

quantities Just defined. This tabulation is more general than the results

given in the appendices, for in the appendices it was also assumed that

none of the constants were zero, that is, mk - m and nk - n; furthermore ,

1 Examples are numerical methods based on polynomial approximations with

equidistant spacing of the independent variable. Indeed, such examples
form not an insignificant portion of the available numerical techniques*
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only case (2) was treated making me - 0. On the other hand, in the tabulation

of Fig. 3.4 these restrictions of the appendices are absent, but the following

assumptions are still made: the roots of the numerator and denominator

are real and distinct, and the straightforward programming techniques of

the appendices is used. Thus, the constants stored are those that appear

explicitly in the various regression equations. Actually some saving in

instructions would result from the use of certain ratios of these constants.

For instance, the regression equatibn Ecf. (5-450

'0(t) - f T(t) - -0 (t-T) (3-47)

takes six instructions, as shown in the coded program of Appendix D.

If, however, (3-47) is written as

t - f )- ,i ( 1(t-T (3-48)

its coding would cost five instructions only, but certain questions on the

relative sizes of the constants would arise. It seemed best to avoid such

questions, because the considerations here are rather general and the value

of a too-specialized treatment is questionable.

The comparison of the three methods of programming can be undertaken

by considering each item of Fig. 3.4. Because of the straight sequential

programming the time requirements are the same as the storage for instructions

and, therefore, consideration of storage will give a complete picture.

As far as the number of constants stored are concerned, the direct

method is not worse than the cascade, which in turn is not worse than the

parallel method. This is so because in the direct method only the non-zero

constants of (3-46) have to be stored, while factorization in the cascade

case will produce as many constants as there are roots in z. In the parallel

method two constants (root and residue) are produced for each denominator
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1 root and if the numerator is not of lesser degree than the denominator,

further terms and constants result. As an example, consider

(1 -- sT

lI s -3 -2 T , 1 -4T(3-149)

for which

mn-i, mk , a 0

n = 4, nk  2,

According to the table of Fig. 3.4 the various constant storage requirements

are

direct: mk +n k + 1 -4

cascade: m + n + 1 - 6

parallel: 2n - 8

These figures can be simply checked. In the direct case the four constants

are apparent in (349). For the cascade case, the transfer function is

written as

5 1 -sT

W(s) g 1 19 (3-5o)1 e-87 e -sT 3. + s a -saf350
*-e l--e l*-e Il--e

and the six constants in question are: *iA , -I/7, .1/2, -1/2, +5/8,

and -1/4. The manner of programming illustrated in Appendix C actually

necessitates the separate storing of positive and negative constants,

even though bf the same magnitude.

For parallel programing W(s) of (3-49) is expanded in partial

fractions in terms of z and takes the form
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W(s) +

(3-51')

9 1

I+ a-s  I -fe -9 T

The eight constants to be stored are evident in the foregoing pquation.

The next item of comparison is the data storage, for wich the

above example reads, on basis of Fig. 3.4

directs m + n - 5

cascade: n a 4

parallel, n 4

These figures can be verified in the three foregoing equations. The numerator

of (3-49) indicates that one past input value (corresponding to the e - s T term)

must be stored; the present input is used as it arrives and then stored

as the past input for the next calculation, as shown in Appendix B. Thus

the numerator implies one data register only. Similarly the denominator

-sT
implies the storage of four past output values, even though the • and

e - 3 s T terms are absent; for the corresponding past outputs must be remembered

for the next calculation.

For the cascade method, (3-50) seems to indicate five past data

to be remembered; however, the e-sT term of the last numerator refi to

a past input that is also the past output of the preceding factor, since

in cascade programming the input of a component program is the output of

the previous one.

In case of parallel programs the four past data are quickly

( identified with the • "sT terms of (3-51).
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The expressions for instruction storage and for time requirements

are identical, and produce the following tally in the present example:

directs 2(m + mk + n + nk) + 7 - 23

cascade: 3m + 4n + 6 - 25

parallel: 7n + 4 - 32

No verification of these figures is carried out by detailed coding of the

programs because the appendices cover the general case. The advantage

seems to be on the side of direct programming as far as time is concerned,

but this advantage is slight and arises from the fact that in the present

example. two denominator constants are zero. An advantage of direct programming

appears also in the total storage requirements for the same reason:

direct: 4 + 5 + 23 = 32

cascade: 6 + 4 + 25 + 1 - 36

parallel: 8 + 4 + 32 + 1 - 45

This example, as well as the tabulation of Fig. 3.4, indicates

the disadvantage of parallel programming. It seems that this kind of

programming may have an advantage over either of the other two in certain

cases, but hardly ever over both at the same time. Thus, the choice narrows

down to direct and cascade programs, or possible combinations thereof.

To show how a combination of methods may be used, we write (3-49) as

5 1 -sT

W(s)1 g E (3-52)I -2sT e-SlT

which indicates a cascade combination of two direct program, for which

respectively
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- n -o m =1

n -2 n -2

nkil nkl

% =0 a a 0

e e

The direct program of each cascaded component is somewhat simpler than it

would be for two separate direct programs because the input and output devices

are manipulated only once for the composite program, rather than once for

each component program. This saving anountsto six instructions, Ux" the

instruction storage or time requirement is:

first components: 2(m + mk + n + nk ) + 6 - 12

second components: 2(m + mk + n + *) * 6 - 16

saving as indicated above -6

total instructions "22

Four constants appear in (3-52), two of which are accidentally identical,

and one of which is made 1; thus, the constant storage is:

first component: sk * nk * 1 - 2

saving -- 1

second component: nk + nk + 1 a 3

Skving -- 1 2

total constants 3

A saving arises in data mmory also, because the past input of the second

component is also the past output of the first one. This gives the following

need of data storages
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first component: m + n - 3

second components m + n - 3

saving -1

4

The results of this example are summarized in Fig. 3.5, which shows a small

advantage of the mixed method over the direct one.

To pursue further the detailed comparison of these various methods

of programming would lead to undue specializations in the Whirlwind code and

to results of doubtful general value. The illustrated attack on the

realization problem, however, shows how a useful estimate of the complexity

of coded programs can be gained from the evident properties of their transfer

functions. Three further problems will be touched on briefly: (I) computing

- delays, (2) means of using the results to select computer codes; and (3)

means of using the results to design special-purpose computers.

A consideration that has been omitted in our discussion is the

delay incurred through the computation itself. If a digital computer is

used as part of a number of control systems -- say, 50 systems -- , then

in each sampling interval it performs 50 computations, one for each system.

The time of a computation is then at most 1/50 of the sampling time, T,

and this delay is presumably negligible. If, however, one digital computer

were used with each system, the computation may and, for the sake of efficiency,

should take an appreciable part of the sampling time. Such a delay would

be very serious and the computer would have to perform a prediction in

addition to the required compensation. In turn, this would lengthen

the program, make it less effective, and may even force a longer sampling
i\

timej indeed, in a marginal case, in which the original compensating program

had a delay nearly as large as the sampling time, the effect may become
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cumulative, since a longer sampling time would in turn require a better

and 16nger program, and so on. In such marginal cases and in any case in

which the computing time is not negligible with respect to the sampling

time, the direct programming has a tremendous advantage over all other

methods. A glance at the direct regression equation (3-20) shows clearly

that all terms but the first one on the right side of the equation can

be computed before the new input value is obtained.1  The computing delay

will thus be the time of merely calculating the term, aj(t), and adding

it to the already prepared partial result. This delay may conceivably

be negligible.

All realizations of real-time linear progrwms involve accumulation

of products as their arithmetic action and the transfer of data from one

register to another as their manipulative action. In case of a single-address 2

instruction code, such as that of Whirlwind, the ex (exchange) operation3

was shown in Appendix B to be very helpful in improving the efficiency

of the code. Other improvements ave possible by incorporating special

operations which facilitate the particular type of programs on hand.

Computers using multiple-address codes could be particularly efficient in

such applications. For instance, in a three-address code an instruction

could locate a constant, a piece of data, and transfer that data to a

third address, after which it would multiply the constant and data

The second composite program in Appendix B is written in this manner.

2 Each instruction specifies an operation and the storage address of a

single operand.

3 This operation exchanges the contents of the accumulator register with
the specified storage register. Thus, one instruction performs a double
duty by obtaining tew data from storage and also transferring to storage
a partial resulto
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( accumulating this product with the partial result always left in the arithmetic

element of the computer. This single order would complete both the arithmetic

action (accumulation of products) and the manipulative action (transfer of

data to an "older-data" register) associated with one term of a regression

equation.

Similar considerations allow one to adapt special-purpose or

fixed-program digital computers to control specifications. To be somewhat

specific we assume that the computer is used as part of a single control

system and will have to perform only one computation in each sampling period.

The computer would not operate appreciably faster than one computation per

sampling period and in order to minimize the computational delay it would

follow a direct regression program. In order to keep such a single-system

computing equipment from becoming excessive, a serial1 computer would

probably be used. The program of the computer would be fixed to correspond

to a direct regression program of certain complexity as defined by the

degrees of m of the numerator and n of the denominator of the program

transfer function. The constants could be set manually on toggle switches

or relays, or they could be stored on the same high-speed storage device2

on which the data are stored. A serial adding unit with proper switching

equipment would allow the multiplication of constant and data (by repeated

additions) and the addition of such product to the accumulated partial

result. The physical size of such a digital control unit may be quite

feasible in certain applications and the design of such a simple special-purpose

digital computer would be particularly justified if the incoming data were

sampled and digital to start with.

A serial computer operates on each digit of a number in sequencej thus,

the equipment is not duplicated for each digit.

2 Magnetic-drmt memory, for instance.
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3.4 Synthesis of Programs in the Frequency Domain

3.41 General Synthesis Procedure

The synthesis of computer programs in the frequency domain may

be broken down into the three following stage. (U. specification of the

desired frequency characteristic or lous of W(jo), (2) approximation of

the desired locus by a realizable program transfer function, and (3)

realization of the program. One way to determine the desired locus is

from the Laplace transform of the operation the computer is to perform.

The second step is the difficult part of the problem. The desired frequency

characteristic must be approximated by a rational function of e-sT . No

general rules are available for making this approximation, but before

making the approximation, one should gain some experience in analysing

program building blocks in the complex plane. Possibly the most systematic

approach, at present, to the approximation problem is to make successive

approximations to the desired characteristic, using the basic program

building blocks of Section 3.2. The third step involves only a straight-

forward inverse Laplace transform. As an example of program syhthesis

in the frequency domain, a program for differentiation will now be synthesized.

3.42 Synthesis of a Differentiation Program

An ideal differentiator establishes the following relation between

input and output:

0(t) - d i(t) (3-5?)

Disregarding initial conditions, the Laplace transform of (3-52) is

H(s) - O(s) -, (3-53),. 1i(s)

and this is the desired transfer function. For a A jc., H(s) becomes
H- (j). jo. (3-54)
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So the locus of the desired transfer function is the imaginary axis. This

completes the first step of the synthesis procadure.

The second step is to find a rational function of e" T that

approximates this locus. This approximation is to be made by geometric

considerations based on the desired locus. In this particular example it

is also possible to employ analytic considerations based on the desired

transfer function of (3-54). It so happens that in the present case the

analytic approach is simpler; nevertheless, the geometric approach is shown

first.

The crudest numerical approximation to a first derivative

i0 the first divided difference.

-(t) . i(t) - T(t-T) (3-5)
T

The Laplace transform of (3-55) is
-sT(s)- )1-e (3-56)

T.

Thus the transfer function of the differencing process is

wo s) - -9TIos) T , (3-57)

Fig. 3.6 shows the locus of Wo(Jco) and compares it iuith the desired one.

At low values of OT (i.e., when the frequency of the input function is low
ff Ok S-locs (t)T -i(t-T)

I __-__ __" s T __ __ ---__

P 0 o *T z - t

Figure J.6 Comparison of first derivative and first difference operators
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with respect to the sampling frequency) the two loci agree reasonably well.

If we could straighten out the circular locus, we would have a better

approximation of the desired locus. Figure 3.7 illustrates a geometric

construction that straightens out the locus and gives us ideal phase

characteristics. di(t-T)
S 1i e- sT  dt i(t) - i(t-T)

- sT

-T- t
(a) Frequency domain (b) Time domain

Figure 3.7 Derivation of an ideal phase, realizable differentiation

operator f

The vectors (I/T)(I - eiJCOT) and (1/2)(l + e-jcOT ) are drawn for

a particular frequency. Using the geometric rule that a triangle inscribed

in a semicircle is a right triangle, one can readily show that 1 + J
add up to 900. However, since c< is a positive phase angle, it must be

subtracted from P (which is negative) to give a resulting angle of -900,

which is the phase of an ideal integrator* It follows that division of

the P-locus by the o(-locus will yield an ideal-phase formula. The

resulting transfer function is
-OT

w,(s) 2 1 - (-58)6-sT ,
l- 1..

4' '
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which has the desired phase in the 'range, O -=wT 6w. The interpretation

in the time domain is both plausible and illuminating. The inverse transform

of.(3-58) shows that,

ldt , (t - T) "T(t) - T(t-T) (-92 (39)

(3-59) states that the average of the derivatives at two neighboring

points is approximately equal to the divided difference for those points.

It is interesting to note that the same approximate transfer

function, (3-58), can be obtained analytically based an a rather good

approximation for esTe

e (3-6o)
lI sT

2

Solving (3-60) for a yields

I -sT
-s 2 1 "-sT • (3-61)

lee

Although in this particular case the above analytic approach is

simple and fairly accurate, its general use has certain drawbacks. The

most obvious one is that the rational function of "a" to be approximated,

which in the present case is ms" itself, is in many cases not explicitly

known; rather it may be obtained as an approximation to a desired locus

or amplitude and phase response. Then to approximate the rational

function of "a", which itself is but an approximation, by a rational

function of e -sT puts the designer on shaky grounds, and it might lead to

far more involved programs than necessary. There is no substitute to

going back to the original specifications and designing directly on their

basis. Another disadvantage of the above analytic approach is that it

is not general. One could replace all "05 by the approximation (3-61),

but how one would get a better solution is not obvious.
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We have an approximation of the differentiation operator, so the

next thing to do is see how good it is. Since the desired locus and its

approximation lie along the same path, a locus study does not give a good

comparison. In such a case separate amplitude and phase plots can be studied.

For a - Jo, W 2(s) becomes

2 *" OT  i (3-62)eJ e'Y

which verifies the previous statement that W2(jea) has ideal phase characteristics.

Hence, it is sufficent to study the amplitude characteristic only.

H(jm) - ; (3-63)

therefore,

cOTt- 2 (3-64)

2

Thus we see from (3-64) that the ratio of the approximate function to the ideal

one is always greater than unity. Figure 3.8, a plot of the amplitude

characteristics, shows us that for low values of aoT, say for coT - the

" (1) H(Jco) - wT

(2) W2(jm) - 2 tan-

( 3) W3Cjw) 1.814 tan

II

II
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differentiation program will give quite good accruacy. For certain control

applications, values of wT up to - or even might give acceptable accuracies.

An examination of the amplitude characteristic of W2(s) in Fig. 3.8

reveals that if W2 (s) is multiplied by a constant, which is slightly less than

unit, we will obtain a better dezrivative on the average. The new transfer

function is

1 e-sTMw3 C W 2 (aC), -C l -s (3- . -65)

Let us arbitrarily choose C so that W (s) - H(s) for 9T - J . Then,
I WI

2 C tan . (3-66)

so

C- . -3 . 0.907. (3-67)
, 6 tanw

The improved transfer function is

w3 1s) l81 1- e , 0 )

and its amplitude characteristic is also shown in Fig. 3.8.

Both curves 2 and 3 of Fig. 3.8 accentuate high frequencies which

may be present at the input because of noise, In this case, a transfer function

whose amplitude characteristic is like that of curve 4 would be a more desirable

approximation for differentiation.

The inverse transform of (3-68) completes the synthesis of a

differentiation program. The result is

O(t) - 1.1 rli L(t) -i'(t-Tg o5.;-T. (3-69)

The accuracy of this differentiation program may be determined from Fig. 3.8,

Curve 3.
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CHAPTER IV

FREQUENCY ANALYSIS OF SOME NUMERICAL IN79GRAfION FORMULAS

In this chapter we apply the methods of frequency analysis to

several numerical integration formulas: the trapezoidal,, Simpson's 1/3

rule, Simpson's 3/8 rule, and Weddle's rule. Frequency analysis is

applied to determine the stability of these formulas, compare their ac-

curacy, and compare their transfer functions with that of the ideal

integrator.

4.1 Numerical Integration

In the numerical integration of definite integrals, the range

of integration is divided into a convenient number of equal intervals,

and the values of the integrand are defined only at the ends of these inter-

vals. Essentially this is the same as sampling (or impulse modulating)

the integrand. Let the distance between samples be T. To obtain an

approximate value of the integral we may determine an nth order polynomial

that passes through n + 1 of the sampled points and integrate the poly-

nomial over the corresponding range, repeating the process until the com-

plete range of the original integral has been covered. If the sampled

points are joined by straight lines, (approximation by a first order of

polynomial) the resulting integration formula is known as the trapesoidal

rule (each interval of the integrand is approximated by a trapesoid).

Joining the points in each group of three sampled points by a parabola

leads to an integration formula known as Simpson's 1/3 rule. If the

points in each group of four sampled points are joined by a cubic curve, we

( A
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get Simpson's 3/8 rule. The trapezoidal rule and Simpson's 1/3 rule

are quite widely known and used, but there is another one, called Weddle's

rule, that is used to obtain great accuracy. Joining the points in each group

of seven sampled points by a sixth order polynomial leads to Weddle's rule.

rn each case the range of integration should be divided into an integral

mltiple of Ong intervals, For example, to use Weddle'sa rule, the range

of inte Igration should be divided into 6, 12, 18 ...... equalintervals.

In what follows we shall designate the transfer functidn of an

ideal integrator as H(s): Thus,

H(s) (4-1)

with whi ch the approximate integration formulas will be compared.

4,11U Trapezoidal Rule

Using the trapezoidal rule the definite integral,

o(t) Cho i(x) dx (4-2)

may be approximated by,

01(t) i(t) + i(t - T) j+ [i(t -T) + i(t 2T- ....

(4-3)

The Laplace transform of (4-3) is

01(8) T C [( + e4sT) (1 + ae5T) + -2sT + ]I(s).
(4-4)
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So the transfer function is

O(s) T 1 + e-sT

A little algebra shows that for B =

W100=) MT w0)= F cot (U-6)

4.12 Simpson's 1/3 Rule

Using Simpson's 1/3 rule the definite integral (4-2) may be

approximated by

0 Wt = T { i(t) + 4i(t - T) + i~t, -2T +

[ict - 2T) + Wt - 3T) + i(t - 4T) ...... -)

7he Laplace transform of (4-4) is

02() T I(s) 1+ 4 e- sT + -2 + +1+ +

or,

T 1 + 4e-sT + e-9
1 2 s)e 2'T I).(4-9)

A
'SI
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Therefore, the transfer function for Simpson's 1/3 rule is

02(s) T 1  4 9-sT + -2sT
W2(,) = M = ' 1 -78y . (4-10)

Dividing (14-10) by (4-1), letting s 3j and using m= algubraio and

trigonometric manipulations loads to the ratio

W2(J*) =T 2 + coo aT (4-11)
= "' si-neT

1.13 Simpson's 3/8 Rule

The approximtion tol he definite integral (4-2) that in obtained

using Simpson's 3/8 rule is

0 (t) = 3T(1(t)+ 31(t -T) + 31(t -2T) + i(t -3T)J+

S(t - 3T) + 3i(t - 4T) + 3i(t - 5T) + i(t - 6T)

(4-12)

The Laplace transform of o3 (t) is
3

O3(T) 3 1+ 3 e -+T + 3 + e35) ( o'3sT + e6sT+"

(14-1))

or,

3s!a3T 1 + 3 -'T3+ 3 28T 0-3a0T 1+3 , +3, ,* I(,) (4-114)
-i -3iT
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Hence for Simpson's 3/8 rule, the transfer function is

03( ) 3T 1 + 3 'T + 3 e-2sT •-3sT
w3(s) = T 1 "3e (- -l)

For s = jo, the ratio of W3(jo) to H(jim) is

W3 (J) = 3 wT 1+ cosT (4-16)

*ffj3) 77 -ir (1 + 2 cos cT) tanO

A considerable amount of manipulation is required to obtain the above form.

4.14 Weddlets .Rule

Ey Weddle's rule the approximation of the definite integral

(4-2) is

o4(t) = 3 {[i(t) + 5i(t - T) + i(t - 2T) + 6i(t - 3T) +

i(t- 4T)+ 5i(t- 5T) + i(t- 6T)] + (t-6T) +
5i(t -. 7T) + i(t - 8T) + 6i(t1 - 9T) + i(t-- 10T) +

5i(t - 1T) + i(t - 12T) 1 . (-17)

In the sam manner as before, the transform of o4(t) is

3T 1+ 5e-sT + •-2sT + 6 •-3sT + e-4sT 5e " s T + e6.T
0 4(s) T+U

(418
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so the transfer function for Weddle's rule is

0(s) sT -2sT+ 6 -3aT T e-SsT+ e-6T
w,),(s : °(° 3 T 1 + 5 e-S + -.'°+ + "'-sT e- "

W(s)= M- M

(4-19)

By using a considerable amount of algebraic and trigonomtric manipulation,

we get for s = jet

W4(JM) 3 cT 1 + 3 con wT + con2  OT (4-20)

= 5 (1+2cosoT)si T " a&2O

4.2 Comparison of Numerical Integration Formulas

With the above equations, we can get a complete picture of the

four approximation formulas in both the time and frequency domains.

Equations (4-5), (4-10), (4-15), and (4-19) are the transfer functions

of each of the numerical integration processes and fzom these the stability

of each one can be determined. Let us now examine the denominator of each

transfer function. If the change of variable, s = esT, is made, it is

easily seen that the magnitude of the roots of all the denominator poly-

nomials is unity; however, there are no multiple roots. Therefore, each

of the numerical processes is stable.

Now we must consider the accuracy of each of the integratLon

formulas. Equations (4-6), (4-1), (4-16), and (4-20) give the ratio of

the particular transfer function to that of the ideal integrator. In Figure

4.1 these ratios are plotted as functions of wT, and we see clearly that,

of the four, Simpson's 1/3 rule and Weddle's rule are the best for wT
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Trapezoidal Rule

Simpson's 1/3 Rule

- Simpson's 3/8 Rule

.... - - Weddle's Rule

0
I S

2.0

'I
I
I
/

/
/

I.

. 9 ~~1 -. ~-"" f 2  2w ' 5T
0.93

0.8

0.7

0.6

I
I

Figure 4.1 Comparison of Errors in Various Numerical Integration

Forwulas
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below I radians. For example, suppose that we wish to integrate a sine2
wave of radian frequency wo and want the error to be less than 2.5%.

For each of the approximation formulas, how many samples mst be taken

in a cycle of the sine wave? The answer can be obtained rapidly from

Figure 4,1 by noting the frequencies at whioh the amplitude ratios become

0.975 or 1.025, as listed below.

Trapesoidal woT = 300 ; 12 samples/cycle
Simpson's 1/3 Rule woT = 750 ; 5.8

Simpson's 3/8 Rule oT = 600 ; 6.0 "

Weddle's Rule o T = 80 ° ;Js4° " 

The number of samples per cycle is indicated for each rule, and this is

obtained by dividing 3600 by the indicated angle,

U,

(v
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APPIEND A

Proof Ohat the Locus of Q(jo) Crosses the Real Axis either Normally

or Tangentially at - 0 and-

Recall that Q(s) is given by the polynomial in e
-s ,

V(s) a k 0 bkeST b° = .

For a - 0 and - J?, Q(e) is real because each term of the polynomial in

real. Since the locus is symetrical about the real axis, it must cross the

real axis at these points.

rn order to examine the behavior of the locus of Q(Jco) at these

points, take the derivative of Q(s) with respect to s.

.4m

dQ k TbTs- . k b ~

k -Ik-i

Observer that N is also a polynomial in e-0 therefore, it will also bedo

real for a - 6 ind ± J

Now consider the derivative in the neighborhood of s - o and

* Js-. u 0 at these points, we will prove that the Q-locus crossesif

the real axis perpendicularly. In the region of interest let da S

where is a small increment of w. Since U must be real (and unequal

to zero as we have assuusd), dQ * :JdQj in order to tiy this condition.

We must now discuss the case in which - 0 for s - 0 or _T

First:observe that if - 0, Q must have a saddle pointI in the region
dQ

near the point where 0 0. Let Us now make the change of variable,

S. .. For an excellent discussion 6f the behaviou* of functions near saddle
points, see Guillemin, *The Matbematics of Circuit hns~aJm&.Wfley.
and Sons, New York, 1949, pp. 298-302.

":
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z e - T so that Q(s) becomes D(z) which is

D(z) - bk Zk

In the immediate vicinity of a saddle point, the function behaves as

D(z) 1 Co 0 Cp(Z - zO)P

in which the C's are constants, z is the value of z at which the saddle

point occurs, and "p - 1" is the order of the saddle point. In this case,

z - +1. rn plotting the locus of D(z), we map the unit circle of the z-plane

into the D-plane (see Fig. A-I).

J y A. z-plane Consider the map in the vicinity

of a possible saddle point (z - _).

Observe that for z near z

S-z 0 - dz 2j/dz . There-

i dz fore, in the vicinity of a saddle

Z point D(z) is

D(z) - C0  C (!jIdzI) p .

~~circle

I 
unit

Fig. A-1 Unit circle in the z-plane that
maps into the D-plane

This readily shows that if Op" is even, the locus in the D-plane (or Q-plane)

is tangent to the real axis. If "p" is odd, the locus is normal to the real

axiso

We will now summarize the results obtained.

a) If d 0 for s - 0 or *J L,- the locus of Q(jw) is normal to

the real axis for a - 0 for j 7 respectively.

respecivel1
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b) If " 0 for s- 0 or + Q(s) has a saddle point at the
-sT

point where the derivative is zero. The change of variable, z - s a

permits us to write, D(z) - C 0' C (z - z )P for z in the immediate vicinity

of the saddle point. If "p" is even, the %-plane locus is tangent to the

real axis at the saddle point. If "p" is odd, the locus is normal to the

real axis.
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APPENDIX B

Coding of Direct Regression Program.

The regression formula

16(t) - a Tt) + a1 Ti(t-T) + a. * a(t-=T) - b1 -6(t-T) b *. -b'(t -nt)0 M n

(B-1)

is to be programed. Assume that the data and the constants are stored.

as followst

Register Content Register Content

NO" (Constants) No. (Data)

A.0 a 1.01 *1(t)

A.1 a1  1.1 T(t - T)

A.n a M.m OM(t, - MT)

B.1 -b 1  0.1 -6(t -T)

B.2 -.b 2  012 ZCt - 2T)

B.n -b nOin (t -nT)
R.OT Partial and

_____________ final results

1These registers are not used in the second composite program.
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The program will first be coded in two distinct parts I arithmetic arnd

mazulative. The arithmetic part performs, at each sampling point, the

arithmetic operations called for by the above regression formula and thus

calculates a new output value:

First Program, Arithmetic Portion1

Register Content Rsl
No. (Instruction) Rsl

P.1 ca O.n

P.2 mr B.n

P.3 to R.0 4 -b n1(t nT)

P-4 ca Oon-1'

P-5 mr B.n-1

P.6 ad R.0

P.7 to R.0 -- (n-l) J -b-a(t - nT)

P.04n4.) ca 0.1

etc. mr B.1

ad R.0 n

t R.0 * IIb 8t -kT)

ca. E.m

mr A.m

ad R.0

P.(14n+3). ta R.0 ai(t - uT) -5 bk(t-kT)

The code is ezplimd In Sc.D. Thesis OTreatmsnt of Digital Control Systems
and Numerical, Processes in the frequency Domain,* J.N?. Salser, Appendix l..Cq
V91. 2, August.1L, 1951, M.I.T.
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Continued s

Register Content
No. (Instruction) Result

* S

0 •

P.4(n+m) ca I.0

etc. mr A.0

ad R.0

ts & 1.0 O(t)

si selects the relevant output device
(as specified by the address section)

P.(4n*4"5) rc R.O records output, o(t), into output
device

It is clear that in this illustration each term of the regression equation

costs 4 instructions.

After the calculation of (t) at a particular sampling point

the data storage has to be rearranged for the next calculationi the present

3(t - nT) can be lost, all other d(t - kT) are to be stepped down one storage

register, and the new output value, ^X(t), just computed is put into 0.1;

the rearrangement of the T(t - kT) is analogous, and the now input value to

be-eceived goes into 1.0. The aoded program performing these manipulations

follows.
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FIRST PROGRAM, MANIPULATIVE PORTION

Register Content
No. (Instruction) Description

P.(4m+4n*6) ca O.nl moves t - (n-l)T1 into location
ts O.n of o(t -nT) and loses S(t - nT)

ca O.n-2 moves f - (n-2)T into
ts O.n-1 - (n-l) loca ion

ca 0.1 moves 1(t - T) into 1(t - 2T)

ts 0.2J location

ca R.O moves '(t) into B(t - T)

ts 0.1 location

ca I.m-i moves - (m-l)j into iTt-mT)

ts I.m location and loses T(t-mT)

ca I.0 moves i(t) into Y(t - T) location

ts I.1

si selects the relevant input device
(as specified by the address section)
and makes computer wait until device
receives a new input value

rd 1.0 reads content of input device into
_(t) location

P.(6n+6n+6) sp P.1 returns control to beginning of
_whole program.
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The manipulations are seen to cost 2 instructions per term of the regression

equation.

There are various ways in which this program can be streamlined.

The main considerations are storage and time. It is possible to save

substantial storage (with a sufficiently long regression equation) by

programming the 6 instructions (4 arithmetic and 2 manipulative) required

for each term only once and using them over and over for the various terms,

each time. In order to do so, a short program must be added to change the

appropriate address sections in the 6 instructions, which can thus be

made to compute a different term each time. This address-changing routine

materially lengthens the time of calculation, unless some very specialized

instructions or equipment is designed.

It appears more desirable to concentrate on reducing the time

requirements in most control applications., for storage is easier to increase

than speed, which seems to be the ultimate limitation in the applicability

of digital computers to controlling. In our present example a notable

reduction in time, and also in storage, results from mixing the arithmetic

1
and manipulative steps and using a new instruction, ex which exchnges

the content of the storage register specified by its address with the

content of the accumulator. The corresponding coded program, which still

uses the same constant and data storage, follows.

This instruction is actually used in Whirlwind applications on a temporary
basis. The code used for this instruction is Le to indicate its temporary
nature; final adoption of this instruction, however, is likely.

%L
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SECOND PROGRAM,_COMPOSITE

Register Content 'eut
No. (Instructions) Keut

P.1 a 0.n

P .2 mr B.n

P.3 px 0~n-l 4 into Storage: -b ~t -nT).,

partial-result n

- into AC: V[t - (n-l)f

P4ts 0.n puts -0F - (n-l)fl into S(t - nT)
locatio~t for no rsanpling%
AC still holds 'Wjt - (n-i)f

P.5 mr B.n-l

P.6 ad O.n-l

P.7 ex O.n-2 _j. into Storage: partia.,.result
into AC: Voft - (n-2)TJ

P.8 to O.n-l + [dt - (n-2) T] to 1[ Et (n-1)T
location

P.4n-7 mr B.2

etc. ad 0.2

ex 0.1 into Storage: partial result
into AC: 'aft -T)

to 0.2 ^o(t - T) to Vt - 2T) location

mr B.1

ad o.1

ox r.m into Storage; partial result

b;U(t -kT)

mr sminto AC: T(t -mT)

ad I.m

ex I .m-1 into StoraLq: partial result
into ACt :TI~ (a-i)tj

P.4n+3 to r,.m (a-i)*j to T~t-mT) location
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Register Content
No. (Instructions) Result

* 0

P.(4n*4m-8) mr A.2

ad 1.2

ex 1.1 into Storae: partial result
into AC: I(t - T)

to 1.2 t- T) into t(t - 2T) location

mr A.1

ad I.1

ts 0.1 into Storaget partial result
(note content of 0.1 has already
been used so that this register
is available)

( )

si selects the relevant input device
(as specified by the address section)
and makes computer wait until device
receives a new input value

rd L.1 Eeads content of input device,

i(t) into Itt - T) location

mr A.0

ad 0.1

ts 0.1 into Storage: final result
4-t) into W(t - T) location

si selects the relevant output device
(as specified by the address section)

rc 0.1 records output, 't), into output
device

P.(4n+4m+6) sp P.1 returns control to beginning of
program

'
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The above composite program is seen to result in considerable

saving of storage and time over the first program, which was given mainly

for illustrative purposes. It uses four instructions per term calculated

rather than 6, and even saves two data registers, I.0 and R.O. Register 1.0

is not needed because the incoming data is immediately used in the calculation

while register R.O is superfluous because the partial results can be stored

in the register from which the data has just been removed for calculation.

One should note another important advantage of the second programs

to all practical extent, it eliminates computational delays entirely.

This is so, because all the computation is performed in advance of receiving

the input, and when the input value T(t) is received, there are only a few

instructions to be carried out in order to obtain the output, 1(t). Only

direct regression programming has this advantage.

The tally of direct regression composite programming in terms of

m and n, the degree of numerator and denominator polynomials of the program

transfer function, is as follows:

Time requirement (in number of
instructions to be carried out
in sequence at each sampling) 4m + 4n + 6

Sto rage Requirements:

Constants m + n + 1
Data m + n
Instruction 4m + 4n + 6
Total

6m,+ 6n + 7

The above tally is made under the assumption that none of the constants

are zero. If some constants are zero, the constant and program storage,

as well as the time, requirements will be reduced, but not the data storage

requirement. These more specific requirements are taken into account in

the sumuary of Art. 3.35.
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. ! APPENDIX C

Coding of Cascaded Program

The set of regression equations

W(t - i(t) d0"tT

o2(t) - -0 (t) + c2  hn1(t-T) -dT)n(t-T)

o, a [o-_(t) * c1 W i(t-T)-d'(t-j~

is to be programmed. Assume the following arrangements of number storage:

Register Content Register Content
No. (Constants) No. (Data)

D.1 -dl 0.1 '1(t-T)

D.2 "d2 0.2 62 (t-T)

D.n -d O.n 3(t - T)n .

C.2 c 2  R.0 Partial Result

C.n cn

A.O a
0

iI
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In the coded program to follow it is assumed that none of the indicated

c kis zero; i.e., m - n1 - 1. Variations are easily accounted for# The

program instructions follow.

Register Conen Description

P.1 si. selects input device and waits until

device has new input value, ft)

P.2 rd R1.0 -0 reads 'r(t) into temporary location

P.3 ca. 0.1

P-4 mr D.1 -d18j (t - T) obtained

P5ad 11.0 'W(t) obtained

P.6 ex 0.1 to Storage: ' (t) into '6 1(t-T)
location 1

to AC: 31(t-T

P-.7 mr C.2

P.8 ad 0.1 -0(t) + c fr-(t - T) obtained

P.9 ts R.0 to Storage: partial result

P.10 ca. 0.2

P.11. ur D.2

P.12 ad R.0 a',(t) obtained
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Continued:

Register Content
No. (Instruction) Description

P.(7n-S) ex O.n-l to Storage: Idnl(t) into

et. 'on- (t-T ) location

to AC: 1 816 (t-T)

mr O.n

ad O.n-1 -6 (t) .c Bnl(t-*) obtained
n-i n n-i

ts R.O to Storage: partial result

ca O.n

mr D.n

ad R.O

mr A.O W(t) obtained

ts O.n to Storage: 6(t) into 6(t-T)

location

si select output device

rc O.n records output, 1(t), into output
device

P.(7n*3) sp P.1 returns control to beginning of

program

Thus, if m - n - 1, the program is 7n 2 instructions long. Suppose

m = n - 2 and let c2 0 0; then the sequence P.6 through P.12 above would

be replaced by the following shorter sequence P.' .9 through P' .12.

P'.9 ts 0.1 puts I'(t) into -Vl(t-T) location

P'.I0 ca 0.2

P' .11 mr D.2

P'.12 ad 0.1 Z(t) obtained
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Thus, each ck = 0 saves 3 instructions.

The tally for cascade programing can now be written:

Time Requirements: 3m 4n 5

Storage Requirements

Constants a n * 1

Data n

Temporary 1

Instruction 3m 4 4n + 6

Total 4m + 6n + 8

Comparison of these requirements with those of other methods of programming

is done in Art. 3.35.

I.
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SAPPENDIX D

Coding of Parallel Program

The set of regression equations

2(t) - f2T(t) - d 2(t - T)

(D-1)

S 62(t) + + (t)

D.1 -dl 6.1 -0 (t -T)

D.2 d 2 .2 -"(t -T)

D.n -d O.n Tn(t T)
n n

F.1 f, 1.0 i(t); also o(t)

F.2 f

• 0

F.n f
n

None of the constants can be zero. The program instructions follow.
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FRegisterCotn
No. (Isruton)2scriation

P.1 siselects input device and waits
until device has new input valuej

.2rd I.0 reads T~t) into its assigned
_________________ storage register

P.3 ca I.0

P.14  mr F.1

P.5 ex 0.1 to Storage: t 1 1t)

to AC: '61(t - T)

P.6 mr D.1

P.7 ad 0.1

PA8 ts 0.1 to Storage: ,(t)

P.9 ca I.0

P.10 mr F.2

P.11 ex 0.2 to Storage: f 21(t)

+ to AC: B'(t - T)

IP.12 mu D.2

P-13 ad 0.2

P.114 ts 0.2 to Storage: '(t)

P.(6n-3) ca I.0

etc. mr F.n

ex 0.n to Storage: f T(t)
n o

to AC: Z (t - T)+i n
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Register Content
No. (Instructions) Description

ur D.n

ad O.n

ta O.n to Storage: n (t)
_On

P.(6n+3) ad O.n-l n(t) * 'ni(t) obtained

etc. ad O.nw2 etc.

ad 0.2

ad 0.1 16(t) obtained

P.(7n+2) ta I.0 to Storage: 1(t)

,( ietc. ii selects output device

re r.0 records output, 1(t) into
output device

P.(7n+5) sp P.1 returns control to beginning of
program

In parallel programing none of the indicated constants can be

zero, and the only possible saving is when several constants have the same

value. Even then the program itself is not affected materially.

The tally for parallel programing follows:

Time Requirement

Storae Requirements a

Constants 2n

Data n + 1
Instructions 7n +

Total lOn * 6

<A... Further discussion of these requirements is left to Art. 353o


